

DigitalOcean

The Gateway to the Cloud

OvS in a Layer-3 Routed Datacenter

Carl Baldwin Jacob Cooper

Layer 3 Public Network

Context

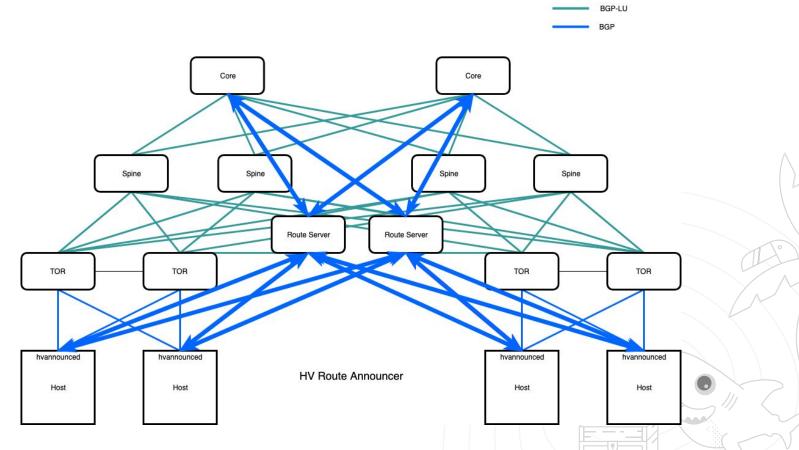
- droplets know they have public addresses (no NAT)
- need better IP mobility to reclaim stranded IPs
- avoid relying more on a global database
- avoid a hardware refresh: use existing NICs, switches, and core routers
- not related to VPC which uses its own overlay over a routed underlay

DO Started with Layer 2

- o Pros
 - easy to deploy
 - simple integration with servers (vlan tags only)
 - simple integration with droplets (VMs)
 - good for relatively small scale
- o Cons
 - chatty
 - scalability issues (scale-up model)
 - huge blast radius
 - hard to troubleshoot
 - limited IP mobility

o quiet

- scalable (scale-out approach)
- better IP mobility
- highly redundant
- minimal blast radius (single rack or even single server)
- easy to troubleshoot
- very easy to isolate faulty device (easy maintenance)

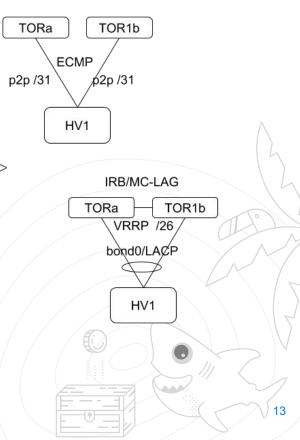


- IP fabric CLOS topology
- BGP is the only routing protocol in the datacenter
 - "Use of BGP for Routing in Large-Scale Data Centers" RFC7938
- More complicated configuration on networking devices
 - each fabric port has assigned IP from individual /31 network
 - each device has many BGP sessions configured, different ASNs
 - automation is a must have

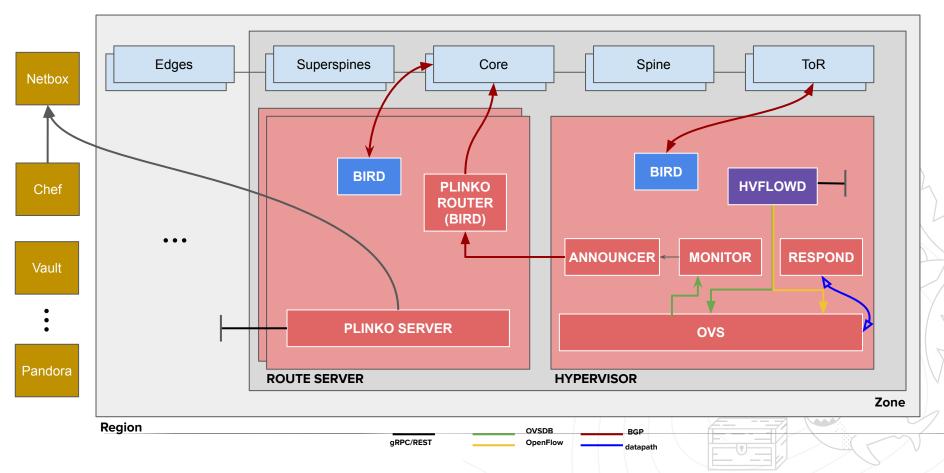
- host route per droplet
 - provides IP mobility (avoid constraining placement and migration)
 - no prefix aggregation up to the data center edge
- many host routes challenges
 - leaf/spine switches need information about all host routes to perform IP forwarding
 - FIB (Forwarding Information Base) size limitation, especially in TORs and spines
- full encapsulation for public traffic is not yet feasible for us

- MPLS loosens constraints related to limited resources on fabric switches
- added MPLS with one additional NLRI to existing BGP sessions (BGP-LU)
 - "Using BGP to Bind MPLS Labels to Address Prefixes" RFC8277

Hypervisors



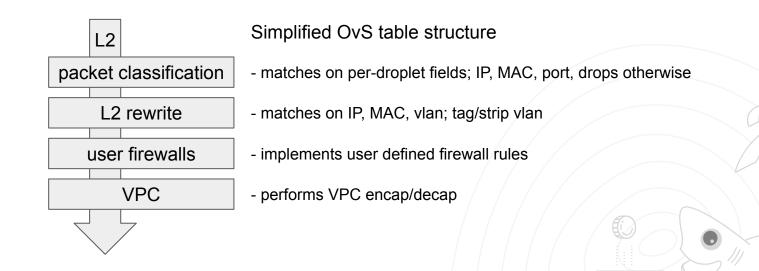
- heavy investment as our HV datapath
 - firewall, floating IP, VPC, public addresses, etc.
- ultimate control over packet forwarding
- parallel data paths for layer 2 and layer 3
 - \circ key to a seamless pivot



Open vSwitch Challenges

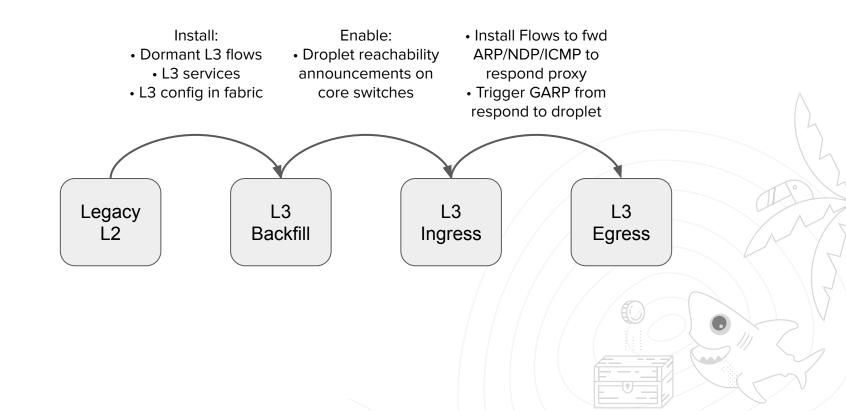
- usually associated with Layer 2
 - built-in bond implementation
- no integration with routing protocols
 - made L3 to the host tricky (for now?)
 - still running L2 to the TOR (impedance mismatch)
 - group with *type=select*, *selection_method=dp_hash*
- not labeling MPLS on the HV
 - older version performed poorly on MPLS labeling
 - BGP-LU implementations limited for HVs anyway

L3/MPLS Deployment Architecture


- o hvflow
 - writes metadata about droplet interfaces to ovsdb
 - programs OvS with flow rules that handle droplet networking
- announced
 - watches ovsdb to learn droplet addresses
 - o announces host routes to route servers to draw *ingress* traffic over L3 network
- respond
 - droplets *think* they are still on an L2 network
 - special MAC (fe:00:00:00:01:01) steers *egress* traffic to the L3 network
 - handles all ARP, NDP, and ICMP echo (gateway only) requests

L3 Pivot

- Keeping the lights on was a large consideration in designing our network architecture
 - The pivot occurs without evacuating droplets from the HV



- With parallel data paths, flows were *backfilled* for existing droplets
 - Parallel data paths for legacy L2 and L3 traffic exist in network fabric and OvS tables
 - Allowed for L3 flows to be added without disrupting L2, and prior to traffic pivot
 - L3 flows are flagged for easy removal by setting a bit in the cookie field

Thank you!